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Optimization of Waveguide Tapers Capable
of Multimode Propagation”

C. C. H.

Summary—By converting Maxwell’s equations, the general case
of mode conversion in tapered waveguides is treated by matrix
formulation in terms of an infinite set of coupled differential equa-
tions with nonuniform coupling coefficients and varying phase con-
stants. An “orthogonalization” or “diagonalization” process is intro-
duced through a nonlinear matrix transformation which is a function
of taper length. The general matrix solution of the problem is obtained
through a perturbation method in the form of an integral equation
of the Volterra type, and the integral equation is solved by an itera-
tion method. In view of the difficulties in finding eigenvalues, the
problem is then reduced to the two-mode case, and the mode con-
version is obtained in an explicit form revealing certain information
which characterizes the choice of “mode-conversion distribution
function.” Optimization is first obtained through proper choice of
the mode-converison distribution function. In an attempt to approxi-
mate a Tchebycheff mode-conversion response, further optimization
is realized by creating “new zeros” and thereby changing the density
of the distribution of zeros in the vicinity of the origin of the mode-
conversion curve and the nature of the optimization procedure es-
sentially becomes that of synthesis. Through using the optimized dis-
tribution function, a total reduction of about 50 per cent in taper
length is realized (when compared with the cosine-squared dis-
tribution) for the case of 50-db prescribed-mode discrimination
in a taper connecting a g-in ID waveguide to a 2-in ID waveguide
operating in the circular electric mode up to 75 kme.

[. INTRODUCTION
ﬁ PERUSAL of recent literature shows that the

tapered waveguide capable of multimode propa-

gation has been a subject of interest for the past
few years, since in long-distance transmission by use of
the low-loss circular electric mode (TEy) in circular
waveguide, tapers are necessary in several important
applications. Tanaka,' expanding the field of conical
guide in terms of the eigenfunctions of the uniform cir-
cular guide and then matching the fields at the junc-
tion, obtained a general expression for a mode conver-
sion through the taper. Solymar,? using a similar tech-
nique with some approximations, gave the design proce-
dure of a one-section conical taper and a multisection
conical taper. Savvirykh,® combining perturbation
theory with the method of W.K.B., treated the field in
the tapered waveguide in terms of an eigenfunction
series expansion in an “artificial” orthogonal coordinate
system. Unger? obtained an improved design of the cir-
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cular waveguide taper with varying cone angle by using
two coupled differential equations. The present paper
treats the general case of an infinite set of coupled
differential equations in matrix formulation, and the
general matrix solution of the problem is obtained
through solving an integral equation of the Volterra
type by an iteration method. A procedure to create
“new zeros” in mode-conversion characteristics is in-
troduced in order to “optimize” the taper for “mini-
mum” length.

The presence of a taper in a waveguide inevitably
introduces spurious modes. On the assumption that the
taper possesses perfect symmetry and its axis is per-
fectly straight, only TEy, modes will be excited in the
tapered region. If the taper axis has a slight curvature,
additional TM,, modes will be excited due to the de-
generacy between the TEg, and TM,, modes. Our
goal in designing the taper is to reduce the spurious
modes to a prescribed level in the operating frequency
range with a taper length as short as possible.

To describe electromagnetic fields in a perfectly con-
ducting curved waveguide with nonuniform and arbi-
trary cross section, we have to solve Maxwell’s equa-
tions with appropriate boundary conditions. Schel-
kunoff’ has shown that certain field problems with com-
plicated boundary conditions can be handled more
readily by converting Maxwell's equations into gen-
eralized telegraphist’s equations. To convert Maxwell’s
equations into telegraphist’s equations, we introduce a
complete set of orthogonal functions most appropriate
to the particular geometry of the problem in question.
Fields within the guide are then expanded in a series
in terms of these orthogonal functions of a complete
set. Subsituting these fields into Maxwell's equations
with due care given to the convergence property of the
series on the boundary and taking advantage of the
particular orthogonality relations of the functions, we
obtain the following generalized telegraphist’s equa-
tions:

aVa d hid
- - Z Zmn]n + ZVTmnVn
dw n=1 n==1
d]m 0 ©

m:172:37"‘7 (1)

¢ 5. A. Schelkunoff, “Conversion of Maxwell’s equations into gen-
eralized telegraphist's equations,” Bell Sys. Tech. J., vol. 34, pp.
995-1403; September, 1955.
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where w is the coordinate along the assumed direction
of propagation, Z,, is the self or mutual series im-
pedances, Y,, is the self or mutual shunt admittances,
VTwms is the “voltage-transfer coefficients,” and IT,., is
the “current-transfer coefficients.” V, and [, are, re-
spectively, the voltages and currents related to the
amplitudes of electric and magnetic intensities asso-
ciated with each particular function. For the circular-
waveguide taper, we choose as the complete set the
orthogonal modes of a straight-circular waveguide with
perfectly conducting walls and filled with a homo-
geneous dielectric as in Fig. 1. It is obvious that the

o | §

’—K
A

Fig. 1—Circular waveguide taper.

choice is arbitrary, although most appropriate in this
case. The infinite set of first-order differential equa-
tions (1) with coupling among all possible modes re-
duces, in this case, to an infinite set with coupling
among TE,, modes only and takes the following form*
in cylindrical cordinates:

dv. 1 da 2., 2k.k

" e el Y
dz Jeom a ds ,;1 k.2 — kbt
Al Yw? 1 de &
=7 - Z 7
ds Wi @ dz ,m1 ko? km

m=1’2737"') (2)

where the summations are extended over all # ex-
cept n=m. v. is the propagation constant of the mth
mode, and &, is the mth root of the Bessel function J;.
If we let 4, and R, be the amplitudes of the {forward
and backward waves of a typical mode TE,,, the fol-
lowing equations are always true:

Vi = N Zm (Am + Ru),

1
Im —= (A - Rm)y
o &)
where Z,, is the wave impedance of TE, mode
7, =l
Ym

Substitution of (3) into (2) results in a new set of equa-
tions in 4, and R,,. If the taper is very gradual, we can
assume backward waves and multiple reflections neg-
ligibly small and obtain the following infinite set of
coupled differential equations in forward-wave ampli-
tudes:

Tang: Optimization of Waveguide Tapers Capable of Multimode Propagation

443

dAn >
= - mAm + ¢ mnAn
dz K “E Sl (4)

where £,,’s are the coupling coefficients defined by

E’"”=<1zfzj/e2—/e (VW 4/~> ©)

II. GENERAL FORMULATION IN MATRIX
REPRESENTATION

The infinite set of equations (4) for a section of a
tapered waveguide can be conveniently cast in matrix

form
p{a} = [m]{4}, {4©@}={cl, (©

where D, { } and [ ] represent, respectively, an op-
erator, a column matrix and a square matrix as follows:

A1(Z)
D=—, {A} - A2(Z) ,
dz As(2)
—v1(@)  En(z)  Eus(p) - - -
[M] = La1(z) —yal2)  Easz) - - -
531(2) 532(2) —'y'g(z) ce

[11(z)] is assumed to be bounded continuous square-
matrix function in a certain interval of the z axis.
{C} is a column matrix of constants. It is seen that the
presence of tapering introduces the coupling terms
£ma(2) in [M], and the A, is no longer orthogonal. In a
uniform circular waveguide, the coupling coefficients
£nn vanish, the propagation constants 7., are independ-
ent of z, and the amplitudes A, form a complete
orthogonal set.

For the lossless case, we can show with the aid of the
law of conservation of energy that the matrix [M]is, in
general, complex and £, = —§&.,*¢ In our particular
case, the elements £,, of the matrix are all real, and
£mn= —Enm since the impedances Z,, and Z, are all real
for all modes far away from the cut-off as seen from
(5). The propagation constant 4, is purely imaginary
for perfectly conducting tapers and has the form
v =B, Where B,, is real. The square matrix [M] then
takes the form

Zit®)  Culd  Cul) - -
—Cr2(2) —jﬁz(Z) Cas(2) -+«

M| =
[ ] "—C.l?)(z) “C.23(Z) —-],('33(2)

, (7)

where £n, = Cua, real functions of z.

¢ The star * implies the complex conjugate.
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We now introduce a nonlinear, nonsingular matrix
transformation of the following form:

{4} = [P®]{BG], (8)

in an attempt to obtain a new orthogonal set of ampli-
tudes Bn.(z) along the tapered waveguide in at least a
localwise sense. Substituting (8) into (6) and following
the rules of matrix calculus, we obtain the following:

[PID{B} = [a][P]{B} — D[P]{B}. )
Multiplication of (9) by [P]~! yields

p{B} =[0l{B}, {BO)} = [PO)]{c}, @0
where
(0] = [P [M][P] — [P]7*D[P] = [q] — [¢], (11)

and

lo] = [PI7[M][P], [ =

If the transformation matrix [P] is independent of z,
the second term in (11) would vanish and the matrix
[Q] is truly diagonal and the B,’s would be orthogonal
as seen from (10). In general, the matrix [Q] is not
diagonal because of the presence of the term [P]1D[P],
which represents the effect of tapering. However, if
[P]7'D[P] can be considered as a small perturbing
term to the uniform guide, the matrix differential equa-
tion (10) can be solved approximately by perturbation
methods. It is worthwhile to note that the transformed-
matrix differential equation (10) is of the same form as
the original differential equation (6); however, the sig-
nificance lies in the fact that the weights of the non-
diagonal terms of the matrix [M | have been shifted into
the diagonal terms of the matrix [Q] by the transforma-
tion of (8). Eq. (10), therefore, can yield a more accu-
rate solution by the perturbation method than (6).

To find the matrix [Q], we must first obtain the
eigenvectors comprising the diagonalizing matrix [P].
This involves the determination of eigenvalues from
the secular equation of the matrix

| [M] = AlZl] =0, (12)

where [I] is the unit matrix. The values of X for which
the equation is satisfied are the desired eigenvalues.
Since [M] is, in general, complex and nonsymmetrical,
the eigenvalues and the associated eigenvectors will

[P D[P].
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also, in general, be complex. From (11) and (8) we sce
that the required transformation matrix [P(z)] also
performs the role of a similarity transformation to the
matrix [M(2)]. If the eigenvalues of the matrix [M(3)]
are distinct, there exists a matrix [P(2)] that diagonal-
izes the matrix [M(z)]. The eigenvectors belonging to
the corresponding distinct eigenvalues then form an
orthonormal basis, z.e.,

Z -Pmans* = 6ns,

m

n,s=1,223,---, (13)
where * denotes the complex conjugate and §,, the
Kronecker delta symbol. When [P] is found, the evalu-
ation of [P]D[P] is straightforward. Our task now is
to solve the infinite set of coupled differential equations
(10) with the appropriate boundary conditions.

The matrix integral of the system of (10) is a square
matrix [B(z)], the columns of which are n-linearly-
independent solutions of the system. Since each column
of the matrix [B(z)] satisfies (10), the matrix integral
[B(g)] also satisfies the equation

p[B] = [ol[B],  [B(O)]=[1],

where [I]is the identity matrix. The formal solution of
(10) can now be written in the form

{B} = [Bl[P(O)]-1{C}. (15)

We now seek the solution of system (14)7 which in
view of (11) can be written as

D[B] = [ql[B] = [[B],  [BO)] = [1].

Under the condition that [¢] may be considered as a
very small perturbing matrix relative to the diagonal
matrix [g], we can take [e][B] as the perturbing non-
homogeneous term of the matrix differential equation
(16). The approximate solution of (16) in matrix repre-
sentation is

181 = exp { [ lalas} — f e R
o §= [l } Lz ez

Eq. (17) is a Volterra integral equation of the second
kind and can be solved by an iteration method. We ob-
tain, therefore, the final solution of (16) as an infinite
series in powers of [e]

(14)

(16)

(17)

’ ’

(81 = exp { [ “lahasf {111~ [ e { = [ TTaar e { [ Tlaena o
+ [ lewd-f zig(z’)]dz'} [ esp { ) y[«z')]df}]

’ rr

(S e {= [ e e { [T lateoas a)as

-+ terms of higher powers in [e]} .

(18)

7 See Appendix I.
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The uniform convergence of the series in (18) in the
closed interval can be shown according to standard
methods.® The final matrix solution {A4(z)} is obtained
through (18), (15), and (8).

The above general formulation can, in principle, be
applied to any number of coupled modes; however, the
explicit solutions of the eigenvalues of (12) are already
too clumsy to handle even in the case of three coupled
modes. Accordingly, only the solution for two coupled
modes (TEyn and TEg), which have the strongest
coupling, will be carried out in the following equation
for a gradual taper. Inspection of the coupling coeffi~
cient in (5) justifies the preceding statement in addi-
tion to the fact that the phase-constant difference is
much larger for all other higher-order modes. For TEy
and TE; coupling, (12) yields the two eigenvalues

M= 3i[— (81 + B2) + V(B — 82)° + 4C1?]
= —jB—T) (19)
and
Ao = Hj[— (81 4 82 — V(B — B2)F + 4C1s?]
= —jB+T),
where
I = VAS + Ci? (20)
and

= (81 — B2); B = 3(B1+ Bo).

exp { —J fo Z(B — I‘)dz}

. I > dd
—J exp l—]f 6+ I‘)dZ}fo v
-exp {ijz F(z’)dz’} de
- 0

The transformation matrix [P] then takes the form

T + A8 T — A3
[ 1/ 1/ 2T " ’
L e JE)
o ! 2T

We see that the unitary condition of (13) is satisfied
by the [P] matrix, and its determinant is —1 in agree-
ment with the fact that the determinant of an orthonor-
mal matrix can only be +1 (corresponding to rotation)

8 F, G. Tricomi, “Integral Equations,” Interscience Publishers,

Inc., New York, N. Y., p. 10; 1957
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or —1 (corresponding to reflection). If use is made of
(20) by letting the angle between the sides A8 and I' be
(26), so that cos 20 =AB/T, then the matrix [P] of (21)
takes the simple form

(7] = {7 ?058 .sm 0].

sinf jcosé
For small angle (26), the variation of (26) is directly pro-
portional to that of the coupling coefficient Cy; and in-
versely proportional to that of the phase-constant dif-
ference AB along the taper. Accordingly, this variation
of (20) can appropriately be interpreted as “mode-con-
version distribution” along the taper. The matrix [¢] of
(11) in terms of 6 becomes a symmetric matrix

(22)

0 #
a

[ = [Pole) = =) @)
o 0

It is clear now that the coupling to the TEy mode be-
comes much smaller for higher-order modes. For a
gradual taper, we see that [e] is, indeed, a small per-
turbing term to the diagonal matrix

R L ] N PR e

Note that the trace of the diagonalized matrix remains
equal to (B148:). For a solution to the first order of
approximation, we obtain from (18) via (23) and (24)

. [ :dp
—jexp {—jf 8- F)dz}f -
0 0 dz

’

-exp {~2jj:)z I‘(z’)dz’} dsz
ew =i [ 6+ iz}

(25)

The normalized boundary condition for the two-mode
case requires that

[ {4} = [{BO}] = [ [PO){c}]

L)

where the vertical bars denote the norm of a vector of
complex elements. For a gentle, smooth taper with a
mode-conversion distribution function wvanishing at
both ends of the taper, we obtain the explicit solution
for 44(l) from (8), (22), (15), (25), and (26)

l ! de
As(l) = exp {—ff @ + r>dz}f =
-exp {ijzl‘(z’)dz’} dz

(26)

27
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Note that Az(lﬂ is essentially in the form of a Fourier
transform of df/dz. Letting

o) = [ T 28)
[}
and integrating (27) by parts, we have
p1
| 4apy)| = | ) <2o>e2fpdp). (29)
[

If we integrate (27) by parts in another way, the fol-
lowing expression is obtained:

o = o) -]

.6

e ().
SR

p=o) = [ 1@

(30)
where

(31)

Eq. (29) is in a form suitable for the computation of
“mode discrimination” when the “conversion-distribu-
tion function” (26) is given in terms of the parameter p.
Eq. (30), on the other hand, gives us a clue that in
order to obtain a higher-mode discrimination, it is ad-
visable to choose a conversion-distribution function with
vanishing first and higher derivatives at both taper
ends. A detailed discussion will be given in Section V
in this respect. When the distribution function (26) is
chosen, the waveguide radius a(p) can be obtained from
(5) and (20) and the taper length of the guide z(p) from
(28).

111. TaE CrHOICE OF CONVERSION DISTRIBUTION
Funcrion

It is evident that the choice of distribution function
is not unique. Under the stipulation that the function
itself vanishes at both ends as expressed in (8), (22)
and (26), a simple choice of such a function in the form
of an infinite series in (o/p1) is

20 = K, sin® (T)
P1

where sin (wp/p1) can be considered as a “generating”
function, and # may or may not be an integer. Substi-
tuting (32) into (29) and using (47) in Appendix II, we
can show that the mode discrimination is given by

(32)
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Fig. 2-—(a)-(c) Mode conversion in waveguide tapers.
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where

m 2
a = 27, b=-—+ and C = — log —
g P k2 — Rt & ax

kakn (12
— (34)

and &, and k, are defined in (2). It is evident from (33)
that C corresponds to the mode conversion of a step
discontinuity in the diameter of the waveguide. For
cases where # is noninteger, general solutions for the
mode discrimination in closed form are impossible, and
we have to resort to numerical integration. Eq. (33) for
integral values of # are plotted in Fig. 2(a)-2(c).

It is seen from these figures that there is always an
“optimum” integer # which minimizes the length of a
taper for a prescribed discrimination. Alternatively, if
we prescribe the taper length, there is always an opti-
mum integer # that provides the highest-mode discrim-
ination. From Fig. 2(a) we see that, for a fixed taper
length of py=18.5, optimum discrimination occurs for
n="7. On the other hand, if we prescribe a —50-db
mode discrimination within a frequency range up to 75
kMc, the required minimum length of the taper for the
case (a(0)=7"'16 and a(l)=1") is about 3 ft* using

10 —
| T = Lt
oPTIMIZED n=3— |1 17 ~ T
pulbs
09
Coa | <
/ n=2
08
2 /
z /
07 /
2 /
2 /
g /
x 06
/ 0
/ '/‘
05 |
4
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© 2 4 6 8 10 12 14 16 I8 20 22 24 26 28 30 32 24 36
ABSOLUTE LENGTH z IN INCHES
Fig. 3-—Comparison of profile of tapers of same
mode conversion (50 db).
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Fig. 4—Mode conversion in waveguide tapers.
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n =2, but only about 2 ft using »=23 as shown in Fig. 3.
The actual computation of radius e and length z is
shown in Appendix II.

Another simple choice for the distribution function is
a polynomial in {(p/p1)

_L n n
2% = G, <—p> <1 — —p«> , (35)
P1 P1

where the “generating” function is (4p/p1){(1—p/p1).
and # may or may not be an integer. Evaluating the
integral of (29) for (35) with integer %, it can be shown
that the mode discrimination is equal to

3-C / 2\?2 1
dalor) | = | M(;) [(Z— (e + 1)

2
- *‘3 (&wl — 1):” for n = 1,
a

3.-5:C 7/ 2\*T /20> 24
w0l =5 G G+ ) e
Al 1
12
~ (ewr -+ 1) | forn = 2
at ‘ ’
3:7-C/ 2\°® 6P1 ) 60
o =T e
Pr\pPL

72 10 ,
- — <p12 + ~> (ewrt — 1)i|‘ forn =3, (36)
a5 a2

where C is defined in (34). Eq. (36) is plotted in Fig. 4.
It can be shown that both (33) and (36) have the value
unity times C at p1=0, as they should. Egs. (33) have all
their zeros at multiples of 7/2; on the other hand, (36)
has its initial zeros shifted closer toward the origin p; =0,
as shown in Fig. 4. Inspection of Fig. 4 shows that the
zeros at large values of p; also gradually shift to positions
at multiples of /2 as (33) do. Comparison of Fig. 2 and
Fig. 4 for curves of corresponding values of # shows that
the sine distribution has better over-all discrimination
than the polynomial distribution, except in the region
between py =0 and the first zero of (33).

IV. OPTIMIZATION

[n an attempt to further generalize and optimize the
mode-conversion distribution function, we expand it in
a symmetrical Fourier series (with the origin of the co-
ordinate system shifted to the center of the taper)

20 =Y D, cosm(*>.

m=0 P1

@37

With suitably-chosen coefficients D,,'s, it is obvious that
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(37) can include all cases described by (32) and (35).
Substituting (37) into (29), we have

prje % ) )
| Aa(pr) | = f 2. Da cosm<—) 62“’11»01
—pifg m=0 P1
via
o 2Dn cosm?(e‘“’1 -1
Ao = , meven (38a
Ao = D (38a)
. ™
mbD,, smm?(e‘“’l +1)
A = , modd (38b
| 42(o0) | Z R (38b)

where @ and b are defined in (34). It is important to
note that only odd or even values of m are required to
represent the mode-conversion distribution function
given in (33), depending on whether # is odd or even.
Equating (38) to (33) for the corresponding case, we
can obtain the D,, in (38) as shown in Table . It is in-
teresting to note that the ratio of D,’s for a particular
n correspond to the coefficients of the binomial expan-
sion. We are now in a position to further optimize the
mode-conversion curve defined by (33), using the values
of Table I as a guide. The aim is to reshape the mode-
conversion curve in such a way that the first few maxima
of the “side lobes” of (33) will be leveled and at the
same time lowered optimally. Before carrying out the
optimizing procedure, it is appropriate at this point to
discuss the incentive for this further optimization in
more detail in the following paragraph.

TABLE 1
C
n=0 Dy = — -
P1
c c
n=2 Dy = —> Dy = — -
p1 o1
i o m’ 2 3 o 3 e
1 p o= ¢
H = 1_2[31
| pL9mC 1 9aC
"= YT, T T 378 20
_s | poB=C , _ 183 , 175
"= Y764 2, T 2764 20, T 10 64 20
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The class of distribution functions that we have been
considering have the property that the distribution
function and all its derivatives are single-valued, uni-
formly bounded, and continuous in the interval of in-
terest. Any distribution function of this class can be
transformed to a general form in terms of the zeros of
the function. With the coordinate origin at the center
of the taper, the function of interest has the form

5 = 1) (%)]

where f(p) is an even function due to the symmetry of
the function (26), and f(p) does not vanish at the taper
ends (p= % p1/2) or any other value of p in the interval.
Taylor® has shown that the Fourier transform of (39)
has the following asymptotic form as p; approaches

infinity:
< w1 >
cos | p1 — T
)

(p1)*?

(39)

F(p1) Nf(%) T(n + 1) (40)
It is, therefore, seen that the mode discrimination of
very long tapers is only trivially different, no matter
what form the distribution function has. On the other
hand, as we have seen earlier, the initial slope of the
function and accordingly the value of # are of consid-
erable importance in “optimizing” the taper. The initial
slope of the function (20) determines the positions of the
zeros near the origin of the mode discrimination curve
As(p). The smaller the initial slope, the further will the
first zero be from the origin. Likewise, the value of n
alters the zero positions, since # changes the slope of
the function. Eq. (40) indicates clearly that spurious
mode conversion or discrimination decays as 1/|p:|"*
and zeros appear at pi=n(r/2) at large values of pi.
Inspection of (33), (36) and (38) confirms this decay
rate and the position of zeros at large values of p;. At
this point, it is particularly appropriate to compare
this decay rate with the nondecaying characteristics of
the Tchebvcheff polynomial of infinite degree. If we are
to simulate the Tchebycheff polynomial of infinite de-
gree by the function of (40), we see that the only choice
to make (40) nondecaying is to make = —1. However,
for this choice of #, the function of (39) will have poles
at the taper ends and will no longer be uniformiv
bounded. This violates our basic requirement, and,
therefore, it is clear that a smooth transition taper with
its mode-conversion characteristics described by a
Tchebycheff polvnomial of infinite degree is unrealiza-
ble. In fact, this unrealizability is simply a consequence
of the law of conservation of energy. This is why even

¢ T. T. Taylor, “Design of line-source antenna for narrow band-
width and low side lobes,” IRE TRANS. ON ANTENNAS AND PROPAGA-
TION, vol. AP-3, pp. 16-28; January, 1955,
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in the transmission line case either steps!® have to be
introduced at taper ends or a modified!* Tchebycheff
polynomial of infinite degree has to be used in the syn-
thesis procedure. Although the frequency range of the
design using infinite degree Tchebycheff polynomial ex-
tends to infinity, for band-pass applications this is un-
necessary. Accordingly, the Tchebycheff design is opti-
mum only in the sense of infinite bandwidth, even for a
transmission-line taper.

From the above exposition, we see that in order to
further optimize, we need to “flatten” or “level” the
decay rate of the first few “minor lobes” of the mode-
conversion curve as much as permissible, after choos-
ing the “optimum” value of # for a prescribed discrim-
ination level from Fig. 2(c). It is clear that the nature of
this procedure essentially becomes that of synthesis.
At first sight, this might look rather aimless if we do it
in a heuristic way by adjusting the coefficients D,, of
(38). Knowing, however, that the shape of the mode-
conversion curve of (38) depends very much on the
density of the distribution of zeros near the origin, we
are thus led to create an extra “zero” at such a position
that the “side lobes” near the origin will be leveled and
at the same time optimally lowered. It is important to
note that the new zeros will be introduced by properly
choosing the coefficients D,, in (38), while the original
zeros were determined only by the term (e*141). This
will be done first for n =3. With reference to (38b), we
have

ofr-2)]

2 2
— 3D4 [12 — <p1ﬁ> } = (), (41)
s
where
bc wC
D,=—D,=—D,.
2 Zpl

With (41) and the boundary condition that .1,(0) = C,

Dy
(o= 2) -

We can solve for the required coefficients D, and Dy
when the position of the new zero is intelligently se-
lected. Inspection of Fig. 2(a) for n=3 shows that it is
advisable to locate the “new zero” around p;=6(r/2)
in order to achieve the desired results. With this value
of p1, we get Dy =1.09375 and Dy =0.28125 from (41)

(42)

10 R. W. Klopfenstein, “A transmission line taper of improved
design,” Proc. IRE, vol. 44, pp. 31-35; January, 1956

i R, E. Collin, “The optimum tapered transmission line matching
section,” Proc. IRE, vol. 44, pp. 539-548; April, 1956.

Tang: Optimization of Waveguide Tapers Capable of Multimode Propagation

449

and (42). A plot of (38) with these values of Dy and
Dy as shown in Fig. 5 indeed gives the desired results.
Fig. 6, showing the relation between the position of the
new zero and the maximum of the maxima of the side
lobes, also confirms the fact that the optimum location
of the new zero should be in the vicinity of 6(x/2).
Mode-conversion curves for

3
cos? <E> and [i <1 - i)]
P1 P1 P1

are also plotted in Fig. 5 for comparison. It is seen that
the optimized conversion curve does have its first few
side lobes maxima leveled, and the maxima of the re-
maining side lobes decay according to a rate asymptoti-
cally proportional to 1/p:* The improvement is about
another 30 per cent reduction in taper length for 50-db
discrimination. The actual optimized length of the
taper is plotted in Fig. 3 for comparison. Through us-
ing the optimized cos® (mp/p1) distribution function, a
total reduction of about 50 per cent in taper length is
realized for the case of 50-db prescribed mode discrim-
ination in a taper connecting a #-in ID waveguide to
a 2-in ID waveguide.
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The same procedure can be applied, for example, to
the # =35 case and we have

pir= (D=6
o (2] [ - (0]

2\2 2\ 2
-] w
T T

and
Dy Da':l
Dy — L 2=y, 44
[ (- (44)
where
7C
D,, = — D,/.
2p;

Inspection of Fig. 2(a) shows that the logical choice for
the location of the new zero is at pi=8(w/2). In this
case, however, we have only two equations for three
unknowns. It is necessary to assume an appropriate
value of Dy so that Dy and Dy’ can be determined. The
first suitable choice of D; might be D,’=75/64 ob-
tained from Table I for the z =35 case. Calculation shows
again that the new zero should indeed be around
p1=8(w/2), and the optimum choice of D; is indeed
(75/64). This case is shown in Fig. 7 together with the
cos® (mp/p1) case for comparison.

Further investigation of the #=35 case reveals a bet-
ter value for Dy because we can now create two new
zeros in view of the extra undetermined coefficient.
The assignment of the second zero will give us an extra
equation and thus determine the three coefficients
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Fig. 7—Comparison of mode conversion in waveguide tapers.
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uniquely. A judicial choice of two zeros at py=8(w/2)
and p;=10(w/2), respectively, should yield even better
mode discrimination at a fixed taper length than the
above case. This result is also plotted in Fig. 7 for com-
parison and shows that the prediction is valid. A reloca-
tion of the first “created zero” at p;=7.72(w/2) gives
the best discrimination for this case, as shown in Fig. 7.
Accordingly, it is seen that we can further optimize a
taper by creating new zeros near the first few zeros of
the mode-conversion curve, and the number of new
zeros allowed to be created increases directly as the
number of undetermined coefficients. On the other hand,
the freedom to have more created zeros is only available
for higher values of # which dictates higher mode dis-
crimination and longer taper lengths.

V. CONCLUSIONS

In an attempt to approximate a Tchebycheff mode-
conversion response in a wideband waveguide taper, we
optimize the taper by creating new zeros in the mode-
conversion response. This response had been initially se-
lected to yield the “shortest” taper length in the “sine
or cosine distribution function family” at a prescribed
level of mode discrimination.

We note that the first and second derivative of a dis-
tribution function with ratio D3/Dy =23 [this is the cos?
(mp/p1) case] vanish at the taper ends, but those with
ratios other than § do not vanish. Thus, change of end
slopes evidently is a consequence of the addition of new
zeros in the mode-conversion curve, since the end slopes
are closely related to the position and density of the zero
distribution near the origin. Because the optimized dis-
tribution functions do not have vanishing derivatives
at the taper ends, it is seen that the distribution func-
tions with vanishing derivatives at the taper ends may
not be most desirable. We now return to (30) for further
information in this respect. It can be easily shown that
for the symmetrical distribution functions we used, the
nth derivatives at the taper ends decreases as 1/p""!,
where p; is the equivalent taper length. This implies
that longer tapers have smaller derivatives and that the
(n+1)th derivative is smaller than the nth derivative.
Investigation of (30) also shows that if a symmetrical
distribution function has its first and second derivative
vanishing, the third derivative will represent a signifi-
cant part of the mode conversion. On the other hand, if
the first two derivatives are nonvanishing but very
small, the total mode conversion may still be smaller
than the vanishing derivative case due to alternate
-+ signs and — signs in the real and imaginary parts of
(30).

From what has been shown here, it is obvious that we
cannot claim to have synthesized the absolute optimum
taper, but we can claim the taper to be very close to
the absolute optimum. The procedure discussed above
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may lead to a further optimization, but it is quite clear
that the small reduction of taper length due to such a
procedure might not justify the amount of computa-
tional labor involved. The starting point is still (32). For
instance, for a certain prescribed spurious mode level,
there is in (32) an “optimum” # which may be non-
integer. The evaluation of (29) with a distribution func-
tion of noninteger power will require numerical integra-
tion, and the evaluation of the radius and length of the
taper as shown in Appendix I will again require numer-
ical integration.

AprPENDIX |

If the matrix [8] can be considered as a perturbing
matrix to a matrix [N], the matrix exponential eI+l
can be expressed in several ways. If [N] and [8] com-
mute, then

eI — (INlplol,

Considering the general case where [N ] and [8] do not
commute, we can write
= (V] + [a])

eI+ — [[] + Z
k=1 k!

By expanding the series, we can collect the terms in
powers of the perturbing term [§] in the form of

20

eWIHB1 = oIV1 4 3™ [5]f([V]).

k=1

This, however, cannot be accomplished in a neat fash-
ion, and it is necessary to solve equations of the form
of (16) by perturbation techniques.

AprPENDIX I

The ccefficient Cy; is obtained from (5) under the stip-
ulation of the TEq and TEy modes that are far away
from cut-off, and it takes the following simple form:

1 da 2kik, k da
Con=— —— = — —,
a dz k% — [k a dz
where
2k ks
k22 - k]_2

From the preceding equation and (20) and (28), we have

f“ da fP 20d
a h 0 k ’

ay

(45)

for a gentle taper.
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For 20 =K, sin* (mp/p,), (45) becomes

() ()
sin™ — ) cos|—
P1 P1

il

n (—)

P1

@ K,
log — =

a1 kL

n—1f°* wp'
+ f sin* 2 (—8) dpil . (46)
n 0 P1
Boundary conditions require that
as
wk log ——l
1 3 35 n ay
K, = | 1—— ... 74--441, n odd
2 2 4 n—1 o1
klog =
0g —
2 4 6 n & a
K, =—r—--- neven. (47)
1 3 5 n—1 o1
Substitution of (47) into (46) yields for
1 as
—[1 — €0S <E>:l log =
2 P1 ay
n=1: a= ae
p 1 p as
l:— — —sin 27 ﬁ] log —
pr 2w p1 ai
=2 a= ae
1 3 T 1 ™™ s
— l:l — — Co8 <—p> -+ — cos? (—)] log —
2 2 L1 2 P ay
=23 a= ae. (48}

The actual length of the taper in terms of the parameters
p1 is obtained from (28). For a gentle taper it is

: [%fpzd P (ke + Ba®)
a —_ 2” =
k22 _ k12 0 P 6 1

0 o

! (k4+k4)fp ‘Z":I (49)
4‘803 2 1 . a2 3

where f3, is the phase constant in free space. The last
term in (49) is negligibly small, in general. Substitution
of (48) into (49) gives

4 9 2 4
1. . =M[(1 +3:+31)x
w(ks? — ki2) 4 64

oo G
—_ — ] Sln & _— — J SIN 2%
“Tiso/ 8 ' 128

o o’y at cos® ¥ sin a
+|——4+—)sin®*x +

2z

18 450 96
«® cost ¥ sin «c] (ka2 — k(%)
600 Bo
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where nw =3
@ 4Bea122 3 9 x sin 2x
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Correspondence

A Broad-Band Coaxial Ferrite
Switch*

A broad-band strip-line reflective ferrite
switch has been described by Johnson and
Wiltse,! who also referred to the possibility
of a similar switch in coaxial line. This note
describes a coaxial on-off switch which will
operate over the band 2300-4100 Mc; two
such units can be combined to make a two-
way switch. An isolation of 40 db was
achieved, with a very low loss for the trans-
mitting path, which, in both these devices,
was obtained by magnetizing the ferrite well

* Received by the PGMTT, June 5, 1961.

1 C. M. Johnson and J. C. Wiltse, “A broad-band
ferrite reflective switch,” IRE TrANS. ON MICRO-
waveE THEORY AND TECHNIQUES, vol. MTT-8, pp.
466-467; July, 1960,

beyond the value for isolation.?

Each switching element employed a small
slug of a developmental ferrite (Baat=2280
gauss) which completely filled a half-inch
section of air spaced coaxial line of 9/32 inch
outer diameter and 3} inch inner diameter,
the ends of which were directly coupledto
Type “C” coaxial connectors. Fig. 1 shows
the attenuation obtained with a field of
about 400 oe compared with pads of approxi-
mately 30 db and 40 db, while Fig. 2
shows the attenuation obtained with a field
of about 2500 oe compared with a 3-db pad.
The attenuation of about 40 db was ob-
tained at 100°C in a convection cooled sole-
noid, but greater attenuation was achieved
at lower temperatures. The VSWR under
reflecting conditions in Fig. 3 is about (.15,

2 The General Electric Company, Ltd., Brit.
Patent Application No, 19948/59; June 10, 1959.

but a lower value may be obtained over a
smaller bandwidth. The solenold power re-
quired was rather high, but was reduced by
constructing the coaxial line of iron with a
brass section in the position of the ferrite
slug. Permanent magnet bias can also be
used without unduly slowing the switching
speed.

Fig. 4 shows the variation in the position
of the effective short-circuit planes in front
of a slug of a similar ferrite material. A two-
way switch may be constructed therefore by
arranging for a high impedance to appear at
the T junction. Two ferrite slugs were used
in the top of the “T,” one of which was
magnetized for isolation and the other for
transmission at any instant. The transmis-
sion loss for the two-way switch is shown in
Fig. 5.

The development of this switch was part
of the work done under a contract for the
Admiralty.



