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Optimization of Waveguide Tapers Capable

of Multimode Propagation*

C. C. H.

Summary—By converting Maxwell’s equations, the general case

of mode conversion in tapered waveguides is treated by matrix

formulation in terms of an infinite set of coupled differential equa-

tions with nonuniform coupling coefficients and varying phase con-

stants. An “orthogonalization” or “diagonalization” process is intro-

duced through a nonlinear matrix transformation which is a function

of taper length. The general matrix solution of the problem is obtained

through a perturbation method in the form of an integral equation

of the Volterra type, and the integral equation is solved by an itera-

tion method. In view of the difficulties in finding eigenvalues, the

problem is then reduced to the two-mode case, and the mode con-

version is obtained in an explicit form revealing certain information

which characterizes the choice of “mode-conversion distribution

function. ” Optimization is first obtained through proper choice of

the mode-converison distribution function. In an attempt to approxi-

mate a Tchebycheff mode-conversion response, further optimization

is realized by creating “new zeros” and thereby changing the density

of the distribution of zeros in the vicinity of the origin of the mode-

conversion curve and the nature of the optimization procedure es-

sentially becomes that of synthesis. Through using the optimized dis-

tribution function, a total reduction of about 50 per cent in taper

length is realized (when compared with the cosine-squared dis-

tribution) for the case of 50-db prescribed-mode discrimination

in a taper connecting a ~-in ID wavegnide to a 2-in ID waveguide

operating in the circular electric mode up to 75 kmc.

I. INTRODUCTION

A

PERUSAL of recent literature shows that the

tapered waveguide capable of multimode propa-

gation has been a subject of interest for the past

few years, since in long-distance transmission by use of

the low-loss circular electric mode (TEO1) in circular

waveguide, tapers are necessary in several important

applications. Tanaka,l expanding the field of conical

guide in terms of the eigenfunctions of the uniform cir-

cular guide and then matching the fields at the junc-

tion, obtained a general expression for a mode conver-

sion through the taper. Solymar,a using a similar tech-

nique with some approximations, gave the design proce-

dure of a one-section conical taper and a multisection

conical taper. Savvirykh,3 combining perturbation

theory with the method of W. K, B., treated the field in

the tapered waveguide in terms of an eigenfunction

series expansion in an “artificial” orthogonal coordinate

system. UngerA obtained an improved design of the cir-
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4 H. Unger, “Circular waveguide taper of improved design, ”
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cular waveguide taper with varying cone angle by using

two coupled differential equations. The present paper

treats the general case of an infinite set of coupled

differential equations in matrix formulation, and the

general matrix solution of the problem is obtained

through solving an integral equation of the Volterra

type by an iteration method. A procedure to create

‘(new zeros” in mode-conversion characteristics is in-

troduced in order to “optimize” the taper for “mini-

mum” length,

The presence of a taper in a waveguide inevitably

introduces spurious modes. On the assumption that the

taper possesses perfect symmetry and its axis is per-

fectly straight, only TEO. modes will be excited in the

tapered region. If the taper axis has a slight curvature,

additional TN! 1. modes will be excited due to the de-

generacy between the TEO. and TM ~~ modes. Our

goal in designing the taper is to reduce the spurious

modes to a prescribed level in the operating frequency

range with a taper length as short as possible.

To describe electromagnetic fields in a perfectly con-

ducting curved waveguide with nonuniform and arbi-

trary cross section, we have to solve Maxwell’s equa-

tions with appropriate boundary conditions. Schel-

kunoff5 has shown that certain field problems with com-

plicated boundary conditions can be handled more

readily b]- converting Llaxwell’s equations into gen-

eralized telegraphist’s equations. To convert Maxwell’s

equations into telegraphist’s equations, we introduce a

complete set of orthogonal functions most appropriate

to the particular geometry of the problem in question,

Fields within the guide are then expanded in a series

in terms of these orthogonal functions of a complete

set. Substituting these fields into Maxwell’s equations

with due care given to the convergence property of the

series on the boundary and taking advantage of the

particular orthogonality relations of the functions, we

obtain the following generalized telegraphist’s equa-

tions:

dIm
— = – ~ Yrn,,Vn + ~ ‘TJ,,,
dw ,,=1 ,7=1

m=l,2,3, . . . > (1)

5 S. A. Schelkunoff, ‘(Conversion of Maxwell’s equations into gen-
eralized telegraphist’s equations,’~ Bell .’j’y~. Tec}l. J., vol. 34, pp.
995-1403; September, 1955.
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where w is the coordinate along the assumeci direction

of propagation, Z~. is the self or mutual series im-

pedances, Y~m is the self or mutual shunt admittances,

‘T~~ is the ‘(voltage-transfer coefficients, ” and ‘T~ ~ is

the ‘icurrent-transfer coefficients. ” V~ and ,f~ are, re-

spectively, the voltages and currents related to the

amplitudes of electric and magnetic intensities asso-

ciated with each particular function. For the circular-

waveguide taper, we choose as the complete set the

orthogonal modes of a straight-circular waveguide with

perfectly conducting walls and filled with a homo-

geneous dielectric as in Fig. 1. It is obvious that the

~i~

Fig. l—Circular waveguide taper.

choice is arbitrary, although most appropriate in this

case. The infinite set of first-order differential equa-

tions (1) with coupling among all possible modes re-

duces, in this case, to an infinite set with coupling

among ‘TEO~ modes only and takes the follc)wing form4

in cylindrical coordinates:

dvm 2kmk.
—––jwwrm+:~~’— v.

dz a dz ~=1 kn2 — km!]

dIm
__=jtivm+ 1 day! 2kmk’” .rn,

dz w,a a dz .=1 knz — kmz

m=l,2,3, .0,, (2)

where the summations are extended over all n ex-

cept n = m. -y~ is the propagation constant of the mth

mode, and km is the mth root of the Bessel function J1.

If we let A ~ and R~ be the amplitudes of the forward

and backward waves of a typical mode TEon, the fol-

lowing equations are always true:

v. = <Zm (Am + R.),

1. = -+ (/fm – l?.),
m (3)

where Z~ is the wave impedance of TEO~ mode

zm=3~.
‘Y.

Substitution of (3) into (2) results in a new set of equa-

tions in Am and Rm. If the taper is very gradual, we can

assume backward waves and multiple reflections neg-

ligibly small and obtain the following idinite set of

coupled differential equations in forward-wave ampli-

tudes:

dAm m

ymAm + z’ &m,,A.,
dz=– n=l (4)

where l~n’s are the coupling coefficients defined by

‘mn=:%a;?kmz(d~+‘i:)- “)
II. GENERAL FORMULATION IN IVIATRIX

REPRESENTATION

The infinite set of equations (4) for a section c)f a

tapered waveguide can be conveniently cast in matrix

form

D{/l] = [M]{ A\, {A(o)} = {cl, (6)

where .D, { } and [ ] represent, respectively, an op-

erator, a column matrix and a square matrix as follclws:

rA,(,)-

f-’h(d t12(z) ‘%3(.Z)

7

,..

7

[M] =L ~
h(z) –72(.2) .%(z) “ “ o

:1

$31(Z) j32(Z) ‘~~(Z) . . . “

[M(z)”1 is assumed to be bounded continuc)us square-

rnatrix function in a certain interval of the z axis.

{C} is a column matrix of constants. It is seen that the

presence of tapering introduces the coupling terms

&~~(z) irr [M], and the .4~ is no longer orthc}gonal. In a

uniform circular waveguide, the coupling coefficients

~~n vanish, the propagation constants y~ are independ-

ent of z, and the amplitudes .4~ form ;a complete

orthogonal set.

For the lossless case, we can show with the aid of the

law of conservation of energy that the matrix [M] is, in

general, complex and t~~ = — ~,,~*. G In our partkular

case, the elements $~n of the matrix are all real, and

~~,, = -~fi~ since the impedances Z~ and Z. are all real

for all modes far away from the cut-off as seen from

(5). The propagation constant ~~ is purely imaginary

for perfectly conducting tapers and has the form

~ =~p~, where l?~ is real. The square matrix [AI] then

takes the form

r–j~l(z) C12(Z) C13(Z) -.” q

[M] =
– c,,(z) –jB,(z’) CM(Z) . . 0

(7)
‘cl,(~) ‘C23(Z) ‘j~s(z) “ “ “ ‘

L J
where $~. = I&, real functions of z.

s The star * implies the complex conjugate.
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We now introduce

transformation of the

a nonlinear, nonsingular matrix

following form:

= [1’(Z) ]{ B(Z)] , (8)

in an attempt to obtain a new orthogonal set of ampli-

tudes Bw(z) along the tapered waveguide in at least a

localwise sense. Substituting (8) into (6) and following

the rules of matrix calculus, we obtain the following:

[P]D{B] = [M][P]{B} - D[P]{B]. (9)

Multiplication of (9) by [P]-l yields

D{l?} = [Q]{l?}, {1?(o)} = [l’(o) ]-’[c} , (lo)

where

[Q] = [P]-’[M][P] - [P]-’D[P] = [g] - [e], (11)

and

M = [~1-’[~l[$’l, [6] = [P]-’D[P].

If the transformation matrix [1’] is independent of z,

the second term in (11) would vanish and the matrix

[Q]istrulydiagonal and the Bin’s would be orthogonal

as seen from (10). In general, the matrix [Q] is not

diagonal because of the presence of the term [P]-’D [P],

which represents the effect of tapering. However, if

[P]-ID [1’] can be considered as a small perturbing

term to the uniform guide, the matrix differential equa-

tion (10) can be solved approximately by perturbation

methods. It is worthwhile to note that the transformed-

matrix differential equation (10) is of the same form as

the original differential equation (6); however, the sig-

nificance lies in the fact that the weights of the non-

diagonal terms of the matrix [M] have been shifted into

the diagonal terms of the matrix [Q] by the transforma-

tion of (8). Eq. (10), therefore, can yield a more accu-

rate solution by the perturbation method than (6).

To find the matrix [Q], we must first obtain the

eigenvectors comprising the diagonalizing matrix [I’].

This involves the determination of eigenvalues from

the secular equation of the matrix

] [M] - AII] ] = o, (12)

where [I] is the unit matrix. The values of A for which

the equation is satisfied are the desired eigenvalues.

Since [fir] is, in general, complex and nonsymmetrical,

the eigenvalues and the associated eigenvectors wil.f

also, in general, be complex. From (11) and (8) we see

that the required transformation matrix [P(z) ] also

performs the role of a similarity transformation to the

matrix [lkf(z) ]. If the eigenvalues of the matrix [~(z)]

are distinct, there exists a matrix [P(z)] that diagonal-

izes the matrix [M(z) ]. The eigenvectors belonging to

the corresponding distinct eigenvalues then form an

orthonormal basis, i.e.,

~ PmnPm8*= CL, n, s = 1,2,3, ~ . . . (13)
m

where * denotes the complex conjugate and &, the

Kronecker delta symbol. When [P] is found, the evalu-

ation of [P ]–ID [P] is straightforward. Our task now is

to solve the infinite set of coupled differential equations

(10) with the appropriate boundary conditions.

The matrix integral of the system of (10) is a square

matrix [B(z) ], the columns of which are n-linearly-

independent solutions of the system. Since each column

of the matrix [B(z)] satisfies (10), the matrix integral

[B(z)] also satisfies the equation

D[B]= [Q][B], [B(o)] = [1], (14)

where [1] is the identity matrix. The formal solution of

(10) can now be written in the form

{B} = [B][P(0)l-l {C}. (15)

We now seek the solution of system (14)7 which in

view of (11) can be written as

D[B] = [q][ll] – [e][l?], [B(o)] = [1]. (16)

Under the condition that [c 1 may be considered as a

very small perturbing matrix relative to the diagonal

matrix [q], we can take [e] [B] as the perturbing non-

homogeneous term of the matrix differential equation

(16). The approximate solution of (16) in matrix repre-

sentation is

‘B]‘exp{Joz’’ldz}-Jo”exp{odz}
exp{-~z’ ~ ~[q(z )l~z’ [4’)] [B(z’)]dz’. (17)

Eq. (17) is a Volterra integral equation of the second

kind and can be solved by an iteration method. We ob-

tain, therefore, the final solution of (16) as an infinite

series in powers of [e]

‘B]‘exp{J`''ldz}{'ll-Jo`exp{-Jz['(z')ldz'}'`(z')lexp{J='''`z')ld
+ f‘ [exp {– J ‘~q(z’)l~z’} [4z’)1 exp {Jjdow}]

~ (~z’exp {-~z” } {J’’[Q(z)]dz}~z)~z[q(z’’)]dz” [,(2”)] exp

}
+ terms of higher powers in [c] .

7 See Appendix I.

(18)



1961 Tang: Optimization of Waveguide Tapers Capable of Multimode Propagation ’445

The uniform convergence of the series in (18) in the

closed interval can be shown according to standard

methods. s The final matrix solution ~A (z) ) is obtained

through (18), (15), and (8).

The above general formulation can, in principle, be

applied to any number of coupled modes; however, the

explicit solutions of the eigenvalues of (12) ;are already

too clumsy to handle even in the case of three coupled

modes. Accordingly, only the solution for tiwo coupled

modes (TEO1 and TEOZ), which have the strongest

coupling, will be carried out in the followirlg equation

for a gradual taper. Inspection of the coupling coeffi-

cient in (5) justifies the preceding statement in addi-

tion to the fact that the phase-constant difference is

much larger for all other higher-order modes. For TEO1

and TEoZ coupling, (12) yields the two eigenvalues

Al = *j[–(p, + @ + V’(B, – B,)’ + 4C12’]

= –j(fl -r)

and

A, = +j[–(p, + p,) – <(p, – .62)2 + 4C12’]

– –j(b+ r),
—

where

r = ~A& + C12’

and

M = %(PI – 132); P = +(P1 + P,,).

-.

[B] =

(19)

(20)

dO

dz’

The transformation matrix [P] then takes the form

,p,=[~/FF i=zl

1 /=’ ‘/=’1” ’21)

We see that the unitary condition of (13) is satisfied

by the [P] matrix, and its determinant is -– 1 in agree-

ment with the fact that the determinant of an orthonor-

mal matrix can only be + 1 (corresponding to rotation)

x F, (~. TriC~~i, “Integral Equations, ” Interscieuce Publishers,
Inc., Ne,v York, N. Y., p. 10; 1957.

or — 1 (corresponding to reflection). If use is made of

(20) by letting the angle between the sides A15’ and ~ be

(2(3), so that cos 20 =L~/r, then the matrix [P] of (21)

takes the simple form

(22)

For small angle (20), the variation of (26) is directly pro-

portional to that of the coupling coefficient C12 ancl in-

versely proportional to that of the phase-constant dif-

ference A@ along the taper. Accordingly, this variation

of (20) can appropriately be interpreted as ‘tmode-lcon-

version distribution” along the taper. The matrix [c] of

(11) in terms of O becomes a symmetric matrix

11[’1 = [~l-laP] = -j “ ‘“ . (23)

:0

It is clear now that the coupling to the TE[)I mode be-

comes much smaller for higher-order modes. For a

gradual taper, we see that [e] is, indeed, a small per-

turbing term to the diagonal matrix

[
[d = [P]-qM][~]= -.7’ p : r ~:r]@(24

Note that the trace of the diagonalized matrix remains

equal to (/31+62). For a solution to the first order of

approximation, we obtain from (18) via (23) and (24)

-’exp{-’Jo”(”-r)dz}fo’s
exp {-2jJ’’r(z)dz}dz

exp {-j foz(~ + r)~z}

. (25)

The normalized boundary condition for the two-mode

case requires that

[ {.4(0)} [ = [ {B(o)} I = [ [l’(o) ]-’[c} I

1
—

-[1 o’
(26)

where the vertical bars denote the norm of a vector of

complex elements. For a gentle, smooth taper with a

mode-conversion distribution function vanishing at

both ends of the taper, we obtain the explicit SOllL1tiOll

for .4’(1) from (8), (22), (15), (25), and (26)

(27)
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Note that 1.42(1) I is essentially in the form of a Fourier

transform of dO/dz. Letting

sz

p(z) = r (z’) dz’
o

and integrating (27) by parts, we have

I ~&JI)] = ~ ‘1(20)@dp .
0

(28)

(29)

If we integrate (27) by parts in another way, the fol-

lowing expression is obtained:

I A,(p) I = ~;{[e2P(;)P=,,- (’),=~

-;[’2’’’(%?P=,($ )P=J=J

+(-’)”+1(+)”[’2’’’(:),=,1

-(3P=J+”””}I (30)

where

sPI = P(1) = ‘r(z)dz. (31)
o

Eq. (29) is in a form suitable for the computation of

‘(mode discrimination” when the ‘(conversion-distribu-

tion function” (219) is given in terms of the parameter p.

Eq. (30), on the other hand, gives us a clue that in

order to obtain a higher-mode discrimination, it is ad-

visable to choose a conversion-distribution function with

vanishing first and higher derivatives at both taper

ends. A detailed discussion will be given in Section V

in this respect. When the distribution function (20) is

chosen, the waveguide radius a(p) can be obtained from

(5) and (20) and the taper length of the guide z(p) from

(28).

III. THE CHOICE OF CONVERSION DISTRIBUTION

FUNCTION

It is evident that the choice of distribution function

is not unique. Under the stipulation that the function

itself vanishes at both ends as expressed in (8), (22)

and (26), a simple choice of such a function in the form

of an infinite series in (p/pi) is

()20 = K. sin” ~ , (32)
P1

where sin (rp/pl) can be considered as a ‘(generating”

function, and n may or may not be an integer. Substi-

tuting (32) into (29) and using (47) in Appendix II, we

can show that the mode discrimination is given by

.

.

.

C(2.4”6. 0.. n)’
ub”(e”pl — 1)

9.,.
pi ~ (a2 + s2b2)

S=o

72 even (33a)

C(l.35. . ..72)’
bfl+’(eapl + 1)

)

2 H (a’ + S’bz)
*=1

n odd, (33b)

g-30 Ij

z
-20 —

-lo I I 1

1

0! 234’567 89101, 12 13 1~ 15 16 17’

.
; -50
u
g -40

:-30

= -20
1

3/2T 5/277 PI 7/~77 9/z7T I l/#T

(a)

it
18 19 20

-lo

I 11 I I I ! I I I II I I i I
01 23456’ 789’ 1011 12’13141516171819z0

27T 37Tp, 477 577 677

(c)

Fig. ?—(a)–(c) h~ode conversion in waveguide tapers
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where

2kmk.
u = 2j, b=-? and C = - log ~ ~ (34)

PI
kn2_km2 al

.~nd km and k,, are defined in (2). It is evident from (33)

that C corresponds to the mode conversion of a step

discontinuity in the diameter of the waveguide. For

cases where n is noninteger, general solutions for the

mode discrimination in closed form are impossible, and

we have to resort to numerical integration. E/q. (33) for

integral values of n are plotted in Fig. 2 (a)–2 (c).

It is seen from these figures that there is always an

.$optimurn” integer n which minimizes the length of a

taper for a prescribed discrimination. Alternatively, if

we prescribe the taper length, there is alwa!rs an opti-

mum integer n that provides the highest-mode discrim-

ination. From Fig. ‘2(a) we see that, for a fixed taper

length cf pl = 18.5, optimum discrimination occurs fol-

n = 7. On the other hand, if we prescribe a — 50-db

mode di:scriminatiou within a frequency range up to 75

kNIc, the required minimum length of the taper for the

case (a (0) = 7“,’16 and a(l) = l“) is about 3 ft4 using

10

r 7 l.’ ‘+
‘ =FT—rT—

OPTIMIZED o =3>

w‘;
05 vi’

- ‘Y I

0.4 Ill
02468101214181S 202224262833323456

ABSOLUTE LENGTH Z IN INCHES

Fig. 3—Comparison of profile of tapers of same
mode conversion (50 db).

n =2, but only about 2 ft using n = 3 as shown in Fig. 3.

The actual computation of radius a and length :Z is

shown ‘in Appendix II.

Another simple choice for the distribution function is

a polynomial in (p/’pI)

(35)

where the “generating” function is (4p/pi) (1 –p/pi),

and n may or may not be an integer. Evaluating the

integral of (29) for (35) with integer n, it can. be shown

that the tnode discrimination is equal to

– : (8.,1 – 1)

II
fern = 1,

I -l,(m) I =
IH3K$+3’”P’- ‘)

12p,
— ~.(e”~’ + 1)1

I A!2(P,)I = lEw%K’2”

-:”(’’’’+$)(’”’’- 1)1

for n = 2,

60

-)
(e”” + 1)

a’

for n = 3, (36)

where C is defined in (34). Eq. (36) is plotted in Fig. 4.

It can lbe shown that both (33) and (36) have the value

unity times Cat PI= O, as they should. Eqs. (33) have all

their zeros at multiples of 7r/2; on the other hand, (36)

has its initial zeros shifted closer toward the origin pl = O,

as shown in Fig. 4. Inspection of Fig. 4 shows that the

zeros at large values of pl also gradually shift to positions

at multiples of r/2 as (33) do. Comparison of F(g. 2 and

Fig. 4 for curves of corresponding values of n shows that

the sine distribution has better over-all discrimination

than the polynomial distribution, except in the region

between p,= O and the first zero of (33).

IV. OPTIMIZ~TION

In an attempt to further generalize and optimize the

mode-conversion distribution function, we expand it in

a symmetrical Fourier series (with the origin of the co-

ordinate system shifted to the center of the taper)

o20 = ~Dmcosm z
m=o PI

Fig. 4—Mode conversion in waveguide tapers. With suitably-chosen coefficients D~’s,

(37)

t is obvious that
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(37) can include all cases described by (32) and (35).

Substituting (37) into (29), we have

2D~ cosm~(e”p’ – 1)

] A,(p,) I = ~
?n=ll az + mzbz

1

, m even (38a)

I

vzb Dn, sinm~ (e=P’ + 1)

] .42(P,) [ = 5 , m odd (38b)
nl=l a~ + MZb?

where a and b are defined in (34). It is important to

note that only odd or even values of m are required to

represent the mode-conversion distribution function

given in (33), depending on whether n is odd or even.

Equating (38) to (33) for the corresponding case, we

can obtain the D~ in (38) as shown in Table I. It is in-

teresting to note that the ratio of Din’s for a particular

n correspond to the coefficients of the binomial expan-

sion. We are now in a position to further optimize the

mode-conversion curve defined by (33), using the values

of Table I as a guide. The aim is to reshape the mode-

conversion curve in such a way that the first few maxima

of the “side lobes” of (33) will be leveled and at the

same time lowered optimally. Before carrying out the

optimizing procedure, it is appropriate at this point to

discuss the incentive for this further optimization in

more detail in the following paragraph.

?1=2

}1=4

}1=1

TABLIZ I
—

Do=~.
P1

9 7rc 197rc
D, = ~.GI D, = ~.y.Fp; .

75 rc 1 75 7rc 1 75 7rc
D1 == ~.%;, 11,, = ~.z.~p;, I]g = —.—-—.

10 64 2P,

The class of distribution functions that we have been

considering have the property that the distribution

function and all its derivatives are single-valued, uni-

formly bounded, and continuous in the interval of in-

terest. Any distribution function of this class can be

transformed to a general form in terms of the zeros of

the function, With the coordinate origin at the center

of the taper, the function of interest has the form

[ (:)21”
29 = f(p) p’ – (39)

where j’(p) is an even function due to the symmetry of

the function (26), and j(p) does not vanish at the taper

ends (p = tpl/2) or any other value of p in the inter~d.

Taylorg has shown that the Fourier transform of (39)

has the following asymptotic form as pl approaches

infinit~”:

(
lZ+l

Cos p~ — —

()

27 )
F(pl) -j ~ r(n + 1) ——

(Pl)n+’

– . (40)

It is, therefore, seen that the mode discrimination of

very long tapers is only trivially different, no matter

what form the distribution function has. On the other

hand, as we have seen earlier, the initial slope of the

function and accordingly the value of n are of conside-

rable importance in “optimizing” the taper. The initial

slope of the function (219) determines the positions of the

zeros near the origin of the mode discrimination curl-e

.4 Z(p). The smaller the initial slope, the further will the

first zero be from the origin. Likewise, the value of n

alters the zero positions, since n changes the slope of

the function. Eq. (40) indicates clearly that spurious

mode conversion or discrimination decays as 1/] pl I ‘+1

and zeros appear at P1 = n(r,t2) at large values of pl.

Inspection of (33), (36) and (38) confirms this deca\-

rate and the position of zeros at large values of PI. ,4t

this point, it is particularly appropriate to compare

this decay rate with the nondecaying characteristics of

the Tchebycheff polynomial of infinite degree. If we are

to simulate the Tchebycheff polynomial of infinite de-

gree by the function of (40), we see that the only choice

to make (40) nondecaying is to make n = — 1. However,

for this choice of n, the function of (39) will have poles

at the taper ends and will no longer be unifornll>-

bounded. This violates our basic requirement, and,

therefore, it is clear that a smooth transition taper with

its mode-conversion characteristics described by a

Tcheb>-cheff polynomial of infinite degree is unrealiza-

ble. In fact, this unrealizability is simply a consequence

of the law of conservation of energy. This is why even

s T. T. Taylor, “Design of line-source antenna for narrow band-
width and low side lobes, ” IRE TRANS. ON .\ NTENN.4S AND PROPAG.+-

TION, vol. .%P-3, pp. 16–28; January. 1955,
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in the transmission line case either stepsl” have to be

introduced at taper ends or a modifiedll Tchebycheff

polynomial of infinite degree has to be used in the syn-

thesis procedure. Although the frequency range of the

design using infinite degree Tchebycheff polynomial ex-

tends to infinity, for band-pass applications this is un-

Ilecessar y. Accordingly, the Tchebycheff design is opti-

mum only in the sense of infinite bandwidth, even for a

transmission-line taper.

k“rom the above exposition, we see that in order to

further optimize, we need to “flatten” or “level” the

decay rate of the first few ‘(minor lobes” of the mode-

conversion curve as much as permissible, after choos-

il~g the “optimum” value of w for a prescribed discrim-

ination level from Fig. 2(c). It is clear that the nature of

this procedure essentially becomes that of synthesis.

.\t first sight, this might look rather aimless if we do it

i 11 a heuristic way by adjusting the coefficients Dm of

(38). Knowing, however, that the shape of the mode-

conversion curve of (38) depends very much on the

clellsity of the distribution of zeros near the origin, we

are thus led to create an extra “zero” at such~ a position

that the “side lobes” near the origin will be leveled and

at the same time optimally lowered. It is important to

note that the new zeros will be introduced by properly

choosing the coefficients Dm in (38), while the original

zeros were determined only by the term (eaol f 1). This

will be done first for ~Z=3. With reference to (38 b), we

have

‘;[32’-(”’:)1

-’D+’ - (f’’+)’]=’) ’41)
where

JVith (41) and the boundar~’ condition that . 1~(()) = C,

(D’-%?=‘ (42)

\Ve can solve for the required coefficients Lh’ and D,’
when the position of the new zero is intelligently se-

lected. l[nspection of Fig. 2(a) for n = 3 shows that it is

advisable to locate the “new zero” around pl = 6(r/2j

in order to achieve the desired results. With this value

of pl, we get D1’ = 1.09375 and D~’ =0.28125 from (41)

10 R. ‘W. Klopfeustein, “t\ transmission line taper of improved
design, ” PROC. IRE, vol. 44! pp. 31-35; January, 1956

11R. E, Collin, “The optimum tapered transmission line matching
section, ” PROC. IRE, vol. M, pp. 539-548; .~pril, 1956.

and (42). A plot of (38) with these values of D1’ and

D; as shown in Fig. 5 indeed gives the desired results.

Fig. 6, showing the relation between the position of the

new zero and the maximum of the maxima of the side

lobes, also confirms the fact that the optimulm location

of the new zero should be in the vicinity of 6(7r/2).

Mode-conversion curves for

‘0s3(3and[:(1-:)13
are also plotted in Fig. 5 for comparison, It is seen that

the optimized conversion curve does have its first fev-

side lobes maxima leveled, and the maxima of the re-

maining side lobes decay according to a rate asymptoti-

cally proportional to l/plL. The improvement is about

another 30 per cent reduction in taper length for 50-db

discrimination. The actual optimized length of the

taper is plotted in Fig. 3 for comparison. Through us-

ing the Optimized COS3 (Tp/pl) distribution function, a

total reduction of about 50 per cent in taper length is

realizeci for the case of 50-db prescribed mode discrinl-

ination in a taper connecting a ~-in ID waveguid(e to

a 2-in I D waveguide.

Fig. 5—Comparison of mode conversion in waveguide tapers.

Fig. 6—Optimization of the position of new zero,
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The same procedure can be applied, for example, to

the n = 5 case and we have

“[32-(’’33[’2-(’1:)’1

-3D’[’2-(’1:)1+ [’2- (P1:YI

“D’[’’-(’’:)’l”[”- (’1:)’1=0 ’43)
and

(44)

where

Inspection of Fig. 2(a) shows that the logical choice for

the location of the new zero is at PI= 8(r/2). In this

case, however, we have only two equations for three

unknowns. It is necessary to assume an appropriate

value of D]’ so that D3’ and D5’ can be determined. The

first suitable choice of D1’ might be D1’ = 75/64 ob-

tained from Table I for the n = 5 case. Calculation shows

again that the new zero should indeed be around

P1 = $(~/2), and the optimum choice of DI is indeed

(75/64). This case is shown in Fig. 7 together with the

COS5 (mp/pl) case for comparison.

Further investigation of the n = 5 case reveals a bet-

ter value for D1’ because we can now create two new

zeros in view of the extra undetermined coefficient.

The assignment of the second zero will give us an extra

equation and thus determine the three coefficients

/ . /
!-

:-60 I I I
z SINGLE ZERO
~ -50 I I I I / /1 -. 1 I (

-lo I I I I I I I I I I I I

I I [ 1 I I I
234567891011 12131415’1 617181920

6 ~fz PI 8li’/2 107/2 1277/2

Fig. 7—Comparison of mode conversion in waveguide tapers.

uniquely. A judicial choice of two zeros at pl = 8(r/2)

and pl = 10(r/2), respectively, should yield even better

mode discrimination at a fixed taper length than the

above case. This result is also plotted in Fig. 7 for com-

parison and shows that the prediction is valid. A reloca-

tion of the first ‘(created zero” at pl = 7.72 (7r/2) gives

the best discrimination for this case, as shown in Fig. 7.

Accordingly, it is seen that we can further optimize a

taper by creating new zeros near the first few zeros of

the mode-conversion curve, and the number of new

zeros allowed to be created increases directly as the

number of undetermined coefficients. On the other hand,

the freedom to have more created zeros is only available

for higher values of n which dictates higher mode dis-

crimination and longer taper lengths.

V. CONCLUSIONS

In an attempt to approximate a Tchebycheff mode-

conversion response in a wideband waveguide taper, we

optimize the taper by creating new zeros in the mode-

conversion response. This response had been initially se-

lected to yield the “shortest” taper length in the ‘(sine

or cosine distribution function family” at a prescribed

level of mode discrimination.

We note that the first and second derivative of a dis-

tribution function with ratio D3/D1 = + [this is the COS3

(mp/pl) case] vanish at the taper ends, but those with

ratios other than + do not vanish. Thus, change of end

slopes evidently is a consequence of the addition of new

zeros in the mode-conversion curve, since the end slopes

are closely related to the position and density of the zero

distribution near the origin. Because the optimized dis-

tribution functions do not have vanishing derivatives

at the taper ends, it is seen that the distribution func-

tions with vanishing derivatives at the taper ends may

not be most desirable. We now return to (30) for further

information in this respect. It can be easily shown that

for the symmetrical distribution functions we used, the

nth derivatives at the taper ends decreases as l/pl’+1,

where pl is the equivalent taper length. This implies

that longer tapers have smaller derivatives and that the

(n+ l)th derivative is smaller than the nth derivative.

Investigation of (30) also shows that if a symmetrical

distribution function has its first and second derivative

vanishing, the third derivative will represent a signifi-

cant part of the mode conversion. On the other hand, if

the first two derivatives are nonvanishing but very

small, the total mode conversion may still be smaller

than the vanishing derivative case due to alternate

+ signs and – signs in the real and imaginary parts of

(30).

From what has been shown here, it is obvious that we

cannot claim to have synthesized the absolute optimum

taper, but we can claim the taper to be very close to

the absolute optimum. The procedure discussed above
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may lead to a further optimization, but it is q,uite clear

that the small reduction of taper length due to such a

procedure might not justify the amount of computa-

tional labor involved. The starting point is still (32). For

instance, for a certain prescribed spurious mode level,

there is in (32) an “optimum” n which may be non-

integer. The evaluation of (29) with a distribution func-

tion of noninteger power will require numerical integra-

tion, and the evaluation of the radius and length of the

taper as shown in Appendix II will again require numer-

ical integration.

APPENDIX I

If the matrix [ti ] can be considered as a perturbing

matrix to a matrix [N], the matrix exponential e[~l+rdl

can be expressed in several ways. If [N] andl [ti ] com-

mute, then

~[lvl+[d = ~[lvlg[v.

Consider’kg the general case where [N] and [6] do not

commute, we can write

By expanding the series, we can collect the ternls in

powers of the perturbing term [ti ] in the form of

~[ivl+[bl = ~m”l + ‘g [ayfk([lv]).

k==l

This, however, cannot be accomplished in a neat fash-

ion, and it is necessary to solve equations of the form

of (16) b y perturbation techniques.

APPENDIX II

The coefficient Clz is obtained from (5) under the stip-

ulation c,f the TEO1 and TE02 modes that are far away

from cut-off, and it takes the following simple form:

1 da 2k1kj
CL? = — —.

k da
._ —?

a dz kzz — klz a dz

where

2k1k2
k=

kT2 – k12 “

From the preceding equation and (20) and (28), we have

J: :=l’;”
(45)

for a gentle taper.

For 20= K. sin’ (mp/pJ, (45) becomes

‘in”-1(3c0s&)

++fo’sin-2(~)dp].(46)

Boundary conditions require that

[-

a2

mk log — 1
Kn=+ 1++...~

al

J
)1 cldd

12—1 PI ‘

a2
k log —

246
K,LZT. T. T...:

al
n even. (}7)

lb — 1 PI

Substitution of (47) into (46) yields for

+[’-cOs(;)llO%
}1= 1: a = ale

[

P 1
— — 1sin 27r Y log 3
PI z PI al

Jb= 2: a = ale

-wcos(;)+:cos’(:)l’og:
IL =3: a= ale. (48)

The actual length of the taper in terms of the paramet ers

pl is obtained from (28). For a gentle taper it is

where @o is the phase constant in free space, The IIast

term in (49) is negligibly small, in general. Substitution

of (48) into (49) gives

-(a+asin’+(:+i3sin2’

1
CY5COS4x sin w ~(kzz – kL2)

—
600 – ,80 “
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where
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?rp C12
~.—— and a = log. —

pl al

?2 ===2;

2a12~Op1
.. =

~(k22-k,2,{’’u[+ -(::2:$)’’’’n’osYsY’
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%=3:

4@Oa1azp1
z=

m(kzz — klzj [ ‘-+”s’”’+3(:+?)

12q+fi3

+ -(’no (q cos 2y + 2 sin 2y)
48

q4(2 sin 2y + q cos 2y + 4 sin 4y + q cos 4y)
— ——

192(q’ + 16) 1

[

1 $q + q’ 12q + q’ 12q’ + qs
— —. +

8(q2 + 1)
+

‘2 48 – q2+-4

451)
p(,w – kl~)

.

iii – ,8, ‘

where

( 81

)(
+ :“–&”’+—a’

)

sin3 x
sinx ——

1120 3

(31 99 81

)(

3X 3 sin 2.X
— —— ~4 — —— @

% “’ – 256 6144
~ + y6—

COS5x sin x 9CZ4
+~

6

sin x cos~ x
——

8
+ (-45 243

~3 _ —— ~5

112 8960 )

Cosa x sin .t

5 +(%”’-:a’)*’:*l-’(iki)’)’
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Correspondence

A Broad-Band Coaxial Ferrite

Switch*

A broad-band strip-line reflective ferrite
switch has been described by Johnson and

Wiltse,’ who also referred to the possibility
of a similar switch in coaxial line. This note
describes a coaxial on-off switch which will
operate over the band 2500–$100 Mc; two
such units can be combined to malce a two-

way switch. An isolation of 40 db was
achieved, with a very low loss for the trans-
mitting path, which, in both these devices,

was obtained by magnetizing the ferrite well

* Received by the PGMTT, June 5, 1961.
1C M. Johnson and J. C. Wiltse, “A broad-band

ferrite reflective switch, ” IRE TRANS. ON MICRO.
WAVE THEORY AND ‘1’ECHNIQLWS, vol. MTT-8, PP.
466-467; July, 1960.

beyond the value for isolation?
Each switching element employed a small

slug of a developmental ferrite ( B,St= 2280

gauss) which completely tilled a half-inch
section of air spaced coaxial line of 9/32 inch
outer diameter and ~ inch inner diameter,
the ends of which were directly coupled to
Type “C” coaxial connectors, Fig. 1 shows
the attenuation obtained with a field of
about 400 oe compared with pads of approxi-
mately 30 db and 40 dbr while Fig. 2
shows the attenuation obtained with a field
of about 2500 oe compared with a 3-db pad.

The attenuation of about 40 db was ob-

tained at 100°C in a convection cooled sole-

noid, but greater attenuation was achieved
at lower temperatures. The VSWR under
reflecting conditions in Fig. 3 is about 0.15,

z The General Electric Company, Ltd., Brit.
Patent Application No. 19948/59; June 10, 1959.

but a lower value may be obtained over a
smaller bandwidth. The solenoid power re-
quired was rather high, but was reduced b~-

constructing the coaxial lhre of iron with a
brass section in the position of the ferrite
slug. Permanent magnet bias can also be
used without unduly slowing the switching
speed.

Fig. 4 shows the variation in the position
of the effective short-circuit planes in front
of a slug of a similar ferrite material. A two-
way switch may be constructed therefore by

arranging for a high impedance to appear at
the T junction. Two ferrite slugs were used

in the top of the “T,” one of which was

magnetized for isolation and the other for
transmission at any instant. The transmis-
sion loss for the two-way switch is shown in
Fig. 5.

The development of this switch was part
of the work done under a contract for the

Admiralty.


